MSP graduate program at Emory

Coursework in Pharmacology and Physiology

National Meeting of Directors of Graduate Studies in Pharmacology Nashville 2005

Historical perspective

- Pre-1988
 - Departmental-based program
 - Introductory graduate pharmacology (2 hrs)
 - Medical Physiology (2 x 8 hrs)
 - Medical Pharmacology
- 1988
 - Interdepartmental Program in Physiological and Pharmacological Sciences
 - Introductory graduate pharmacology (expanded:3 hrs)
 - Medical Physiology
 - Medical Pharmacology (elective)

Historical perspective

- 1995
 - Molecular Therapeutics and Toxicology
 - Expand Intro Pharm course to 4 hrs
 - Integrate necessary physiology
- 2000
 - Molecular and Systems Pharmacology
 - Split out Drug Metabolism and Toxicology to separate course
 - Expand scope of Intro Pharm, especially physiology
- 2004
 - New core course in Principles of Basic Biological and Biomedical Sciences includes sections on Pharmacology
 - Frees up space in Intro Pharmacology for more systems/ disease/drug class-based topics

IBS 555/556 Principles of Basic Biomedical and Biological Sciences

Summary of modules

- Fall 555
 - Introduction
 - Macromolecules and methods to study them
 - The nucleus: chromatin organization replication, and repair
 - The nucleus and gene expression:
 Transcription through translation
 - Proteins and Enzymes
 - Membranes, organelles and trafficking

- Spring 556
 - Signaling
 - The cell cycle
 - The cytoskeleton
 - Genetics
 - Cell-cell interactions
 - Development
 - Immunology
 - Disease
 - Cancer
 - Neurodegenerative

Former Introductory Pharmacology lectures covered in IBS 555/556

Electrical properties of membranes I Electrical properties of membranes II

Ion channels: structure/function I Ion channels: structure/function II The neuron: structure and biology

How to make a brain; cell type and organization The synapse I: organization and pharm. tools

The synapse II: neuromuscular junction as model

The synapse III: presynaptic mechanisms
The synapse IV: postsynaptic mechanisms

GPCRs

GPCRs - regulation of number, location, and activity

G proteins as molecular switches

G protein effectors & RGS proteins

G protein regulated second messengers

Lipid Signaling

Ras & the Superfamily I

Ras & the Superfamily II

Receptor tyrosine kinases I

Receptor Tyrosine Kinases II

Protein kinases and phosphates I

Protein kinases and phosphates II

IBS 531 Principles of Pharmacology Syllabus

Quantitative Aspects of Drug Action

Molecular basis of specificity: Principles of drug action Classification of receptors, molecular basis of subtypes The law of mass action, concentration-response relationships

Agonists: The link between recognition and effect Antagonists

Drug Disposition

Drug absorption
Drug distribution
Drug excretion and metabolism
Pharmacokinetics

Peripheral Nervous System

Neuroeffector junction drugs I: Introduction
Neuroeffector junction drugs II: Parasympathetic
Neuroeffector junction drugs III: Ganglion and
neuromuscular blocking drugs
Neuroeffector junction drugs IV: Sympathomimetics
Neuroeffector junction drugs V: Sympathetic antagonists

Neuropharmacology

Organization of the central nervous system
Mechanisms and therapy of seizure disorders
Control of Arousal I: Gen. anesth., sedative/hypnotics, alcohol
Control of Arousal II: Stimulants and hallucinogens
Strategies of pain therapy

Altered responsiveness to drugs: Tolerance, physical dependence Stimulus properties of drugs and drug abuse

Drug treatment of degenerative disorders: Parkinson's and Alzheimer's Diseases

Therapeutic Approaches to Psychiatric Disorders I: Psychoses Therapeutic Approaches to Psychiatric Disorders II: Affective

IBS 531 Principles of Pharmacology Syllabus

Cardiovascular and Renal Pharmacology

Muscle Physiology II
Muscle Physiology II
Overview of the circulation
Neural and humoral control of the circulation
Cardiac Function
Cardiac Conduction and Rhythm
Myocardial Ischemia
Myocardial Failure
Anticoagulant,thrombolytic and stroke drugs
Overview of renal physiology
Renal drugs
Anti-hypertensive drugs
Anti-hyperlipidemic drugs

Treatment of Cancer and Infectious Diseases

Infection therapeutics I: Anti-viral Infection therapeutics II: Antibiotics Infection therapeutics III: Antibiotics Cancer therapeutics I

Cancer therapeutics II

Anti-inflammatory and Immunosuppressant drugs

Anti-inflammatory drugs I: Prostaglandins and other eicosanoids Anti-inflammatory drugs II: Anti-histamines and glucocorticoids Immunosuppressants Drugs used in the treatment of asthma

Endocrine and Gastrointestinal drugs

Contraceptives Insulin and anti-diabetic drugs Gastrointestinal drugs

IBS 531 Principles of Pharmacology Syllabus

Cardiovascular and Renal Pharmacology

Muscle Physiology I
Muscle Physiology II
Overview of the circulation

Neural and humoral control of the circulation

Cardiac Function

Cardiac Conduction and Rhythm

Drugs used in myocardial ischemia
Drugs used in myocardial failure
Anticoagulant, thrombolytic and stroke drugs

Overview of renal physiology

Renal drugs Anti-hypertensive drugs Anti-hyperlipidemic drugs

Treatment of Cancer and Infectious Diseases

Infection therapeutics I: Anti-viral Infection therapeutics II: Antibiotics Infection therapeutics III: Antibiotics

Cancer therapeutics I Cancer therapeutics II

Anti-inflammatory and Immunosuppressant drugs

Anti-inflammatory drugs I: Prostaglandins and other eicosanoids Anti-inflammatory drugs II: Anti-histamines and glucocorticoids Immunosuppressants

Drugs used in the treatment of asthma

Endocrine and Gastrointestinal drugs

Contraceptives Insulin and anti-diabetic drugs Gastrointestinal drugs

Sample lecture outlines

Neuroeffector junction drugs IV: Sympathomimetics

Hall

Anatomy & physiology of the sympathetic nervous system
Drug targets at sympathetic nervous system synapses
G protein-coupled receptor signaling pathways
Sympathomimetic drugs: epinephrine, albuterol, amphetamine, etc.

Contraceptives

Mifepristone

Feng

Menstrual cycle and hormonal control

Mechanisms of hormonal-based contraception: negative feedback.

Estrogens and progestins
receptors
synthetic and natural

Clomiphene

IBS 532 Drug Metabolism and Toxicology

Biotransformation

Introduction to biotransformation: inactivation, bioactivation, reactive intermediates

Cytochrome P450 I

Cytochrome P450 II and other oxidation enzymes

Epoxide hydrolase; quinone oxidoreductase; conjugation enzymes

Metabolism of toxic compounds I Metabolism of toxic compounds II Induction and inhibition of metabolizing enzymes Genetic variation in drug response and toxicity

Toxicology: general principles

Overview of Toxicology

Toxicity endpoints : Descriptive animal toxicology, in vitro toxicity tests

Risk assessment and regulatory toxicology I

Risk assessment and regulatory toxicology II

Mechanisms of Cellular Toxicity I: Bioenergetics

Mechanisms of Cellular Toxicity II: Disruption of ionic

homeostasis

Mechanisms of Cellular Toxicity III: Oxidative stress

DNA damage and repair

Principles of mutagenesis and carcinogenesis

Carcinogens and anticarcinogens: Experimental models and assays

Developmental toxicology I Developmental toxicology II Acute poisoning and treatment

Toxicology: specific toxins

Receptor-mediated toxicity: Ah receptor Hypersensitivity and autoimmune reactions

Alcohols I: CNS toxicity

Alcohols II: systemic toxicity

Heavy metals

Current required courses

Year 1

- 555 BBBS (6)
- 531 Pharm (4)
- 570r Graduate Seminar (2)
- 597r Rotations (2)
- 556 BBBS (6)
- 532 Drug Metab. Toxicol (2)
- 570r Graduate Seminar (2)
- 597r Rotations (2)

Year 2

- 537 Frontiers Mol. Pharm (1)
- 570r Graduate Seminar (2)
- IBS 606 Values in Science
- 538 Design and Analysis of Experiments (4)
- 570r Graduate Seminar (2)

Year 3

790r Advanced Graduate Seminar (1)