START YOUR FUTURE HERE

PHARMACOLOGY AT MICHIGAN BRINGS IT ALL TOGETHER:

AMAZING GRADUATE TRAINING Pursue your Ph.D., M.S., or summer internship with supportive faculty in a highly collaborative, inclusive community of scientists.

EXTENSIVE CAREER DEVELOPMENT Explore your options at our annual career symposium and enjoy certificate programs, courses in grant writing, and teaching experience.

BROAD RANGE OF RESEARCH AREAS Specialize in Cancer, Cardiovascular, Renal, Endocrine, or Neuro Pharmacology, Precision Medicine, G-Protein Signaling, Ion Channels & Transporters, or Protein Folding & Structure.

DRUG DISCOVERY Identify new drug targets and discover new therapeutics in partnership with the U-M Center for the Discovery of New Medicines.

TOP-RANKED CLINICAL ACCESS Michigan Medicine is rated among the nation’s best in a broad range of adult and pediatric specialties.

FANTASTIC ALUMNI NETWORK Academic and industry leaders around the world started here and continue to serve as mentors for our students.

BEAUTIFUL PLACE TO LIVE Ann Arbor offers the best of cosmopolitan culture, cuisine and all-season adventure in a compact setting.

WHAT WILL YOUR IMPACT BE?

APPLY FOR FALL 2019 ADMISSION

PH.D. APPLICATION DEADLINE: December 1, 2018
S.U.R.P. APPLICATION DEADLINE: February 15, 2019
M.S. APPLICATION DEADLINE: April 15, 2019

CONNECT WITH US
medicine.umich.edu/pharmacology
What is Pharmacology?

Often confused with pharmacy, pharmacology is a separate discipline in the health sciences.

Pharmacology

is the science of how drugs act on biological systems and how the body responds to the drug. The study of pharmacology encompasses the sources, chemical properties, biological effects and therapeutic uses of drugs.

Pharmacy

uses the knowledge derived from pharmacology to achieve optimal therapeutic outcomes through the appropriate preparation and dispensing of medicines.

If you:

• are a highly motivated student seeking a career in the biomedical sciences,
• have a strong interest in making a major contribution to the understanding of both novel and current disease processes,
• would like to be involved in the development of new therapies used in the clinic,

then you should:

Explore Pharmacology!

Learning more is the first step to a challenging, productive, and rewarding career.
Pharmacology **integrates the knowledge of many disciplines**, including medicine, pharmacy, nursing, dentistry, and veterinary medicine.
This integrative nature allows pharmacology to have a unique perspective for solving drug, hormone, and chemical-related problems as they impinge on human health.

Since pharmacology can be studied at so many different levels, it has a broad range of applications, including:

- Focusing on treatment and prevention of major diseases
- Examining the effects of chemical agents on subcellular mechanisms
- Dealing with the potential hazards of pesticides and herbicides

Some of the new and exciting areas in pharmacology are:

- Personalized precision medicine and gene therapy through genomic and proteomic approaches
- Regenerative pharmacology to optimize development of bioengineered and regenerating tissues
- Computational and modeling approaches as both design and drug discovery tools to understand cell function
- Nanotechnology-based approaches to fighting disease

While remarkable progress has been made in developing new drugs and in understanding how they act, the opportunities that remain are endless!

Ongoing discoveries regarding fundamental life processes will continue to raise new and intriguing questions that stimulate further research and evoke the need for fresh scientific insight.

This booklet provides a broad overview of the discipline of pharmacology and describes the many employment opportunities that await graduates in the pharmacological sciences, as well as outlines the academic path that they can follow for a promising career in pharmacology.

“My interest in pharmacology developed from my mother, herself a medical professional, and my many visits to her hospital opened my eyes to the reality of suffering due to various diseases. As a kid, I used to wonder how a small pill could cure complex diseases. With my perpetual interest in pharmacology, I opted to pursue a PhD in cardiovascular pharmacology. Cardiovascular diseases, being the leading cause of death, always have many exciting research opportunities. For example, my PhD dissertation work is focused on deciphering vasoactive effects of the novel adipokine 'apelin'. This research has broad implications on currently on-going clinical trials and will enhance knowledge about the apelinergic system in health and disease.”

Amreen Mughal, Graduate Research Assistant, PhD Candidate,
North Dakota State University; Fargo, ND
What Do Pharmacologists Study?

Pharmacology is the study of how a drug affects a biological system. These effects can be therapeutic or toxic, depending on many factors. Pharmacologists are often interested in therapeutics, which focuses on the effects of drugs and other chemical agents that minimize disease, or toxicology which involves the study of the adverse, or toxic, effects of drugs and other chemical agents. Toxicology can refer to both drugs used in the treatment of disease and with chemicals that may be present in household, environmental, or industrial hazards.

Pharmacology has two major branches: pharmacodynamics and pharmacokinetics.

Pharmacodynamics
Molecular, biochemical, and physiological effects of drugs, including drug mechanism of action.

Pharmacokinetics
Absorption, distribution, metabolism, and excretion of drugs.

The pharmacokinetics and pharmacodynamics of a drug will change with disease states, leading to decreased therapeutic effect and increased toxicity. Age, sex, liver and kidney function can also change drug response!

Pharmacodynamics is what the drug does to the body and pharmacokinetics is what the body does to the drug.

Pharmacology is closely interwoven with other bioscience disciplines including physiology, biochemistry, cellular and molecular biology, microbiology, immunology, genetics, neuroscience, and pathology.
Pharmacology can be divided into a variety of topical areas:

Focus: Behavioral Pharmacology
Purpose: Investigate effects of drugs on behavior and of how behaviors can influence drug effects
Examples of Research Areas: Study the effects of psychoactive drugs on learning, memory, wakefulness, sleep, and drug addiction; understand behavioral consequences of experimental intervention on enzyme activity or brain neurotransmitters and metabolism; study how behaviors influence drug-taking

Focus: Biochemical Pharmacology
Purpose: Investigate how drugs interact with, and influence, the chemical “machinery” of the organism
Examples of Research Areas: Study biosynthetic pathways and their kinetics; investigate how drugs can correct the biochemical abnormalities that are responsible for human illness

Focus: Cardiovascular Pharmacology
Purpose: Investigate effects of drugs on the heart, the vascular system, and those parts of the nervous and endocrine systems that participate in regulating cardiovascular function
Examples of Research Areas: Study the effects of drugs on arterial pressure, blood flow in specific vascular beds, release of physiological mediators, and neural activity arising from central nervous system structures

Focus: Chemotherapy
Purpose: Investigate drugs used for treatment of microbial infections and malignancies
Examples of Research Areas: Study and develop chemotherapeutic drugs that will selectively inhibit the growth of, or kill, the infectious agent or cancer cell without seriously impairing the normal functions of the host

Focus: Clinical Pharmacology
Purpose: Investigate the application of pharmacodynamics and pharmacokinetics to patients with diseases; this discipline now has a significant pharmacogenetic component
Examples of Research Areas: Study how drugs work, how they interact with the genome and with other drugs, how their effects can alter disease processes, and how disease can alter the effects of drugs

Focus: Drug Metabolism
Purpose: Investigate the metabolic breakdown of drugs and how they are changed by the body
Examples of Research Areas: Study ways to control how drugs are altered by the body in order to maximize their therapeutic effects and minimize their undesirable side effects
Focus: **Endocrine Pharmacology**
Purpose: Investigate drugs that are either hormones, hormone derivatives, or drugs that may modify the actions of hormones normally secreted by the body
Examples of Research Areas: Study the nature of diseases of metabolic origin; understand use of drugs to help regulate and control endocrine function

Focus: **Ethnopharmacology**
Purpose: Investigate the use of traditional remedies (plants, fungi, or animals) for medicinal and/or health purposes
Examples of Research Areas: Study and document indigenous medical knowledge; contribute to improved health outcomes in regions of study; search for pharmacologically unique principles from existing indigenous medicines

Focus: **Molecular Pharmacology**
Purpose: Investigate the biochemical and biophysical characteristics of interactions between drug molecules and those of the cell
Examples of Research Areas: Study how cells respond to hormones or pharmacologic agents, and how chemical structure correlates with biological activity

Focus: **Neuropharmacology**
Purpose: Investigate effects of drugs on components of the nervous system, including the brain, spinal cord, and the nerves that communicate with all parts of the body
Examples of Research Areas: Study ways to use drugs in the treatment of specific disease states of the nervous system; determine functions of the nervous system that are modified by drug action; elucidate the neurobiological nature of disease processes

Focus: **Pharmacogenomics**
Purpose: Investigate how a person’s genetic makeup affects their response to drugs
Examples of Research Areas: Study drug-gene interactions; investigate novel therapeutics tailored specifically to a person’s genetic makeup

Focus: **Toxicology**
Purpose: Investigate the toxic effects of drugs and other chemicals
Examples of Research Areas: Study the adverse effects of drugs on development, organ systems, and molecular and cellular processes

Focus: **Translational Pharmacology**
Purpose: Investigate the efficacy and usefulness of new treatment modalities in human experiments
Examples of Research Areas: Study and predict human drug response on the basis of mathematical models; support drug development and safe and effective dosing
A Brief History of Pharmacology

Distinctions between the useful actions of drugs and their toxic effects were recognized thousands of years ago. As people tried plant, animal, and mineral materials for possible use as foods, they noted both the toxic and the therapeutic actions of some of these materials.

Past civilizations contributed to our present knowledge of drugs and drug preparations. Ancient Chinese writings and Egyptian medical papyri represent the earliest documented compilations of pharmacological knowledge. They included classifications of diseases to be treated and recommended prescriptions for such diseases.

The introduction of many drugs from the New World in the 17th century stimulated experimentation on crude preparations. These experiments were conducted chiefly to get some ideas about the possible toxic dosage for such drugs as tobacco, ipecac, cinchona bark, and coca leaves. By the 18th century, many such descriptive studies were being conducted. How drugs produced their effects was, however, still a mystery.

The term pharmacology comes from the Greek words pharmakon, meaning a drug or medicine, and logos, meaning study.
The birth of modern experimental pharmacology is generally associated with the work of the French physiologist Francois Magendie (1783 – 1855) in the early 19th century. Magendie’s research on strychnine-containing plants clearly established the site of action of these substances as being the spinal cord and provided evidence for the view that drugs and poisons must be absorbed into the bloodstream and carried to the site of action before producing their effects. The work of Magendie and his pupil, Claude Bernard, on curare-induced muscle relaxation and carbon monoxide poisoning helped to establish some of the techniques and principles of the science of pharmacology.

During the second half of the 19th century, pharmacology emerged as a well-defined discipline when Rudolf Buchheim (1820 – 1879) established the first institute of pharmacology at the University of Dorpat in Estonia (then a part of Russia) in 1847. Among the notable students who received research training in Buchheim’s laboratory was Oswald Schmiedeberg (1838 – 1921), sometimes referred to as the “father of modern pharmacology”. In his 46 years at the University of Strassburg, Schmiedeberg trained some 120 students, many of whom later occupied academic chairs in pharmacology departments throughout the world.

One of the most eminent of Schmiedeberg’s students was John Jacob Abel (1857 – 1938), who brought the new science of experimental pharmacology from Germany to the USA and became the first American full-time professor of pharmacology. He co-founded the American Society for Pharmacology and Experimental Therapeutics in 1908.

The progress and contributions of 20th century pharmacology were immense, with over twenty pharmacologists having received Nobel prizes. Their contributions include discoveries of many important drugs, neurotransmitters, and second messengers, as well as an understanding of a number of physiological and biochemical processes.
Achievements and New Frontiers

Pharmacology in the 21st century continues to build on previous discoveries. Current research in pharmacology extends across a wide frontier that includes:

- developing new drugs
- discovering new druggable targets
- learning more about the properties and novel indications of drugs already in use
- investigating the effects of environmental pollutants
- using drugs as probes to study cell and organ system functions
- exploring how genetic variation impacts drug disposition and efficacy

A major contribution of pharmacology has been the advancement of knowledge about cellular receptors with which hormones and chemical agents interact. New drug development has focused on steps in this process that are sensitive to modulation. Identifying the structure of receptors will allow scientists to develop highly selective drugs with fewer undesirable side effects.

Many significant discoveries have resulted from this research. For example, advances in antibacterial and anticancer chemotherapy have played a major role in reducing infectious diseases and producing cures for certain types of cancers. Other research has led to the development of drugs for the treatment of hypertension, congestive heart failure, and cardiac...
arrhythmias, as well as more effective treatments for asthma, pain, anxiety, and chronic psychiatric disorders with far fewer unpleasant side effects.

Obtaining the sequence of the human genome greatly expanded the study of pharmacogenetics/pharmacogenomics, i.e., how variation in genetic information impacts how a particular drug is absorbed, metabolized, and/or eliminated, as well as how the particular drug interacts with its cellular targets. This field offers considerable promise for development of novel therapeutics, optimized drug trials, and medicine tailored to each person’s response.

Over the next several decades, the knowledge emerging from pharmacological studies will have an immeasurable impact on society. There are still many diseases that we don’t know how to cure or manage adequately – cancer, autism, depression, and drug use disorder, to name just a few.

Major challenges include developing better drugs for treating severe infections like AIDS and other viral diseases, cancer, drug-resistant bacteria, and preventing rejection of organ transplants. Research on drug addiction holds the promise of developing new treatments for drug dependence and withdrawal as well as identifying individual differences that may influence a person’s susceptibility to addiction.

Gene therapy opens the possibility of developing gene products that could alter the course of a disease. The emergence of tissue engineering to treat failing organs demands drugs that can facilitate the process. Nanotechnology approaches to drug discovery open the door for site-selective delivery and more accurate dosing.

Pharmacology is such an integral part of our lives that we often aren’t even aware of it. Aspirin, antibiotics, and antiseptics are so common in our lives that we forget there was a time when they did not exist. As a pharmacologist, there are so many ways that you can help improve human health. It is an exciting time to Explore Pharmacology!
Why Choose Pharmacology?

Perspectives from the field

“Pharmacology appealed to me because of the highly translational component. It also offered me interdisciplinary training, which really provided me with multiple theoretical and technical skill sets to make me competitive for a career in science. Think cross-fit training. By identifying novel mechanisms of action of toxicants I hope to decrease the risk that these compounds pose to humans.”

Brian Cummings, PhD, Professor and Director, Interdisciplinary Toxicology Program, Pharmaceutical and Biomedical Sciences, University of Georgia, College of Pharmacy; Athens, GA

“In my role at Pfizer, I integrate knowledge from different disciplines including: chemistry, biology, safety, and clinical pharmacology to predict/estimate efficacious dose and dosing regimens. The success of these predictions and benefit to patients really demands that we understand the target pharmacology. What excites me most about my career is that one of these molecules may become a successful drug and may make a difference in the quality of lives of our patients! I find that hope extremely rewarding.”

Aarti Sawant-Basak, PhD, Senior Principal Scientist, Pharmacokinetics, Dynamics and Metabolism, Pfizer Inc.; Cambridge, MA

“Pharmacology is the ideal translational bridge between basic science and clinical medicine. The excitement of basic scientific discovery related to drugs and drug action is enhanced by moving the findings into tools to better understand biology, and ultimately drugs that can potentially treat human disease. The satisfaction of engaging in the many stages of drug discovery -- using drugs as tools to understand biology, drug development, and drug evaluation and regulation -- are all part of the domain of the pharmacologist. These diverse areas also represent the multitude of career opportunities that training in pharmacology creates.”

Darrell Abernethy, MD, PhD, Associate Director for Drug Safety, Food and Drug Administration (FDA)

“For pharmacologists, the first challenge is to understand the molecular defects that cause disease. That requires an appreciation of human genetics, biochemistry and physiology, and also a willingness to learn from the simplest model organisms. To eventually “fix the machine” we need to be thinking about chemical pharmaceuticals but also about emerging technologies like biologics and gene therapy. Being a pharmacologist requires both a broad perspective and a focused research strategy.”

Henrik Dohlman, PhD, Professor and Chair, Department of Pharmacology, University of North Carolina at Chapel Hill; Chapel Hill, NC

“As an educator of medical students, I thrive on the “lightbulb” moments when the mechanism of how a drug works suddenly comes alive for the students.”

Kelly Karpa, PhD, Professor, Department of Pharmacology, Penn State College of Medicine; Hershey, PA
“What drew me to pharmacology was the integrative nature of pharmacological research. My research directly impacts the health and well-being of animals in extensive grazing systems. Grazing livestock are continuously exposed to a variety of bioactive molecules from plants and some of them can be toxic. I use pharmacology to investigate the mechanism of toxin action, and work as part of a scientific team to formulate evidence-based management plans to prevent livestock poisoning from occurring. What I like most about my career is that my work directly contributes to improving animal health and welfare.”

Benedict (Ben) Green, PhD, Research Pharmacologist, United States Department of Agriculture (USDA), Agricultural Research Service; North Logan, UT

“As a young child I was fascinated with nature – from the giant sequoias to the little lizards and bugs – all leading me to focus on science in school. What amazed me then, and now, is how life can readily adapt to so many different conditions and that wonderment led me to study chemistry and biology. What I now realize is that the beauty of nature is the realization of unseen molecules dancing with each other and that is pharmacology – the secret of life.”

Craig Beeson, PhD, Professor, Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina; Charleston, SC

“I realized my passion for the field of pharmacology and toxicology when I was undergoing the training to become a pharmacist. It was exciting to learn about delicate mechanisms by which various drugs work to affect our body. The more I learned about the intricacy of medicine, I wanted to dive deeper into this field so I decided to go to graduate school. With the increasing need for personalized medicine, I expect that pharmacology will be a key discipline to lead the next generation of patient therapy.”

Dahea You, PharmD, PhD Candidate, Rutgers University, Ernest Mario School of Pharmacy; Piscataway, NJ

“Pharmacology is the most fundamental way to fight diseases. It is all about understanding what drugs do to our body and what our body does to the drugs. Without this understanding we couldn’t move anywhere in modern medicine.”

Katharina Brandl, PhD, Assistant Professor, University of California – San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences; San Diego, CA

“Imagine knowing that your research directly contributed to finding a new treatment which helps patients! That gives me the day-to-day excitement I feel in applying pharmacology to discover drug targets that can modify or prevent disease. Understanding the principles of drug action in physiological systems opens the door for a universe of careers. These principles guide testing of ideas through bench research to understand effectiveness of the novel molecule. Toxicologists assess its safety and clinical pharmacologists design trials in humans. Regulatory scientists evaluate all this to enable the US Food and Drug Administration’s decision on approval. It is never, ever boring to come to work each day.”

Pamela Hornby, PhD, Senior Scientific Director & Fellow, Cardiovascular & Metabolic Disease Therapeutics, Janssen, Pharmaceutical Companies of Johnson & Johnson; Spring House, PA
Career Opportunities

Pharmacology knowledge is necessary in just about all biomedical and veterinary related fields. There is also an increasing need for experts who can study, comprehend, and translate pharmacology in a number of related fields. The diverse career opportunities in pharmacology reflect the integrative nature of the field.

What career options are available for those with training in pharmacology?

<table>
<thead>
<tr>
<th>Field</th>
<th>Example Job Titles/Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academia</td>
<td>Professor, Instructor, Educator, Lab Manager, Administrator, Research Associate</td>
</tr>
<tr>
<td>Foundations and Non-profits</td>
<td>Program Manager or Director, Grants Officer, Executive Director, Communications Specialist, Project Manager</td>
</tr>
<tr>
<td>Government</td>
<td>Investigator, Staff Scientist, Director of Regulatory Affairs, Advisor, Administrator</td>
</tr>
<tr>
<td>Industry</td>
<td>Staff Scientist, Director of Research, Project Manager, Medical Science Liaison, Field Application Specialist</td>
</tr>
<tr>
<td>Law</td>
<td>Tech Transfer Specialist, Patent Lawyer</td>
</tr>
<tr>
<td>Science Policy and Outreach</td>
<td>Policy Analyst or Advisor, Public Affairs Director, Outreach Director, Government Affairs Specialist, Consultant</td>
</tr>
<tr>
<td>Science Writing</td>
<td>Author, Editor, Freelance Writer, Medical Writer</td>
</tr>
</tbody>
</table>

Pharmacologists who wish to pursue teaching and/or research careers in academic institutions can join university faculties in all areas of the health sciences, including medicine, dentistry, veterinary medicine, pharmacy, pharmaceutical sciences, and nursing. Universities also offer research opportunities in virtually every pharmacology specialty.

Government organizations employ pharmacologists in research centers such as the National Institutes of Health, the Environmental Protection Agency, the Food and Drug Administration, and the Centers for Disease Control. Opportunities range from basic research to study the actions and effects of pharmacological agents to drug safety and regulatory responsibilities.

The applications of pharmacology to health and agriculture have resulted in phenomenal growth of the drug manufacturing industry. **Pharmaceutical corporations** employ pharmacologists to develop products and to determine molecular or biochemical actions of various chemicals; toxicologists determine the safety of drugs with therapeutic potential.

Private research foundations involved in addressing vital questions in health and disease also draw from the research expertise of pharmacologists. Some pharmacologists hold administrative positions in government or private industry. Working in this capacity, they may direct or oversee research programs or administer drug-related programs.

The need to communicate science effectively with policymakers and the public has yielded opportunities in science writing, science policy, and outreach. The biotechnology field requires tech transfer and patent professionals who can help translate and advance discoveries for wider use.

Regardless of the setting, pharmacologists often work as members of multidisciplinary groups. Collaborating with professionals from many backgrounds contributes to the thrill of entering unexplored realms and participating in discoveries that have an impact on life and health.
Preparing for a Career in Pharmacology

Suggested bachelor’s degrees for pharmacology:
For students who attend schools that may not offer pharmacology courses or degrees, students are advised to earn a bachelor’s degree (either a B.S. or a B.A.) in one of the biological sciences, chemistry, or biochemistry.

Suggested coursework to prepare for a degree in pharmacology:
• Writing and Language
• Literature
• Biochemistry
• Molecular biology
• Organic chemistry
• Physics
• Calculus
• Statistics
• Pharmacology
• Toxicology
• Pathology
• Anatomy and Physiology

Research experience is invaluable
Hands-on research experience will help you learn how to solve problems and think like a scientist. Get acquainted with professors who have active research programs and inquire about working as a laboratory assistant, either during the academic year or during the summer. There are also many formal undergraduate research programs available, including the Summer Undergraduate Research Fellowship (SURF) program offered through the American Society for Pharmacology and Experimental Therapeutics. Information on this program can be obtained at https://www.aspet.org/awards/SURF/.
Post-baccalaureate programs

Some students find that post-baccalaureate ("post-bac") programs are a useful additional step to improve their skills after the bachelor’s degree. Post-bac programs may help with additional research experience or in completing coursework required to apply to graduate programs. They may be formal programs or involve more independent study. Students interested in these opportunities should seek programs that match their career goals.

Graduate study

Depending on your chosen career field, a master’s, PhD, or other professional doctoral degree (MD/DO or PharmD) may be required. PhD programs in pharmacology can also be found in schools that offer medical, pharmacy, and veterinary medicine degrees, and in graduate schools of biomedical sciences. Many programs offer assistantships and fellowships that will provide a stipend, tuition, and health insurance while you are enrolled. If you would like to obtain a medical or pharmacy degree as well, look into combined MD/PhD, DO/PhD, PharmD/PhD, or DVM/PhD programs. Earning a PhD degree generally requires four to six years. Earning a dual degree takes about two to three years longer.

What courses are typically offered in a pharmacology PhD program?

- Physiology
- Cell and molecular biology
- Biochemistry
- Statistics
- Research design and methods
- Pharmacology
- Toxicology
- Immunology
- Pharmacokinetics and pharmacodynamics (PK/PD)
- Discipline-specific courses (e.g., cardiovascular pharmacology, neuropharmacology, immunotoxicology)

The major portion of the graduate degree program is devoted to laboratory research. The primary goal is to complete an original and creative research study that yields new information and withstands peer review. Because each program has different areas of emphasis, it is important to consider several programs, keeping in mind how they relate to your own areas of interest.

What should you consider when deciding on a pharmacology PhD program?

- Areas of research expertise among faculty
- Publications of faculty
- Research funding of faculty
- Student flexibility in choosing research projects
- Availability of training grants and stipends designated for graduate student support
- Extent to which research efforts are independent or linked by interdisciplinary team approaches
- Current positions held by previous graduates

Post-doctoral research

PhD graduates have the option to complete two to four years of additional training in a post-doctoral ("post-doc") position to expand their research skills and experience and to mature as an independent scientist. The combination of graduate and post-doctoral experiences enables young investigators to contribute new perspectives on unique areas of research. It is important to note that not all careers require the completion of post-doctoral training. Typically, those who wish to enter research and teaching fields will need some post-doctoral experience. If your interests lie outside the lab, a post-doc may not be necessary.

No matter what training you pursue, you should focus on gaining transferable skills, such as writing, public speaking, collaboration and teamwork, critical thinking and problem-solving, and project management.
How Professional Societies Can Help You

Navigating through the steps required for the career you want can sometimes feel overwhelming. Joining a professional society like the American Society for Pharmacology and Experimental Therapeutics (ASPET) can help provide guidance with benefits such as:

Networking
As a member, you can learn from the expertise of more senior scientists as well as make connections with peers. Networking opportunities are available in person at our Annual Meeting and chapter meetings, and virtually through a variety of online member groups.

Fellowships and Awards
ASPET’s Summer Undergraduate Research Fellowship (SURF) program provides stipend support for undergraduates to conduct summer research in pharmacology. See https://www.aspet.org/awards/SURF/ for more information. Travel awards and poster awards are also available for undergraduate members to attend and present their research at the ASPET Annual Meeting. See https://www.aspet.org/awards/ for more information.

Career Center
ASPET’s Career Center is constantly posting new jobs in pharmacology and related health science fields, including post-doctoral positions.

“Being at the forefront of developing new treatments for patients is what drew me to pharmacology. My lab possesses the expertise to collaborate directly with pharmaceutical and biotechnology companies from around the world to understand how specific compounds work to treat pain.”

Beverly Greenwood-Van Meerveld, PhD, Professor of Physiology, Director Oklahoma Center for Neuroscience, Oklahoma University Health Science Center; Oklahoma City, OK
News and Perspectives

ASPET’s monthly newsletter, quarterly membership magazine, social media presence, and website all provide news from the field, career opportunities, and other updates relevant to members. PharmTalk, a blog by and for young scientists, provides perspectives on careers and leadership opportunities.

Publications

Stay up to date with the latest research and publish your own findings in ASPET’s journals, Drug Metabolism and Disposition, The Journal of Pharmacology and Experimental Therapeutics, Molecular Pharmacology, and Pharmacological Reviews.

For more information on becoming a member of ASPET, please visit: https://www.aspet.org/membership/ – we look forward to welcoming you!

“Pharmacology has opened so many doors for me because of its breadth and depth – meaning the study of therapeutics in disease can involve so many disciplines from molecular biology to whole animal physiology – to me that is the beauty of modern pharmacology!”

Walter J. Koch, PhD, Professor and Chair, Department of Pharmacology, Temple University School of Medicine; Philadelphia, PA

This publication was prepared by staff and volunteer members of the American Society for Pharmacology and Experimental Therapeutics (ASPET). We are grateful to members of the ASPET Division for Pharmacology Education who produced earlier versions of this publication in 2003, 2006, and 2012.

The 2017 edition was edited by Catherine L. Fry, PhD.

Contributing authors for the 2017 edition include:

Oreoluwa Adedoyin, PhD
Raeann Carrier, PhD
Tamara Escajadillo, BSc

Mark Hernandez, PhD
Sophia Kaska, PhD
Jayne Reuben, PhD

We are grateful to Nicole Kwiek, PhD for additional review of the text.

Graphic design by Allen Wayne, LTD in collaboration with Judith Siuciak, PhD and Suzie Thompson.
Index of Advertisers

Boston Univ, Sch of Med. 21
Brown Univ ... 22
George Washington Univ 21
Georgetown Univ 23
LSU Health, Shreveport 24
The Univ of Kansas 23
The Univ of Texas Medical Branch 25
Univ of California, San Diego 21
Univ of California, San Francisco 21
Univ of Cincinnati 27
Univ of Louisville 26
Univ of Michigan 2
Univ of Minnesota 28
Univ of North Carolina, Chapel Hill 29
Univ of Pittsburgh 28
Univ of Tennessee Health Science Ctr 26
Univ of Texas, Austin 30
Univ of Texas Health, San Antonio 31
Univ of Wisconsin, Madison 32
Washington State Univ 26

Summer Undergraduate Research Fellow Awards (SURF)

Gain valuable research experience through ASPET’s SURF program

The ASPET Summer Undergraduate Research Fellow (SURF) Awards introduce undergraduate students to pharmacology research. Our goal is to use authentic, mentored research experiences in pharmacology to heighten student interest in careers in research and related health care disciplines.

Since 1992, over 2,200 students have conducted research in faculty labs through the SURF program.

Fellows have opportunities to:
• Investigate the latest issues in biomedical research
• Get hands-on experience with laboratory techniques
• Collaborate with faculty and other students
• Build and expand their professional networks
• Learn about careers in research and related health care disciplines

Fellows receive stipend support to conduct 10 weeks of summer research.

For more info and to apply, visit us online at: www.aspet.org/awards/SURF
PhD in Pharmacology and Physiology

- Genomics
- Bioinformatics
- Genetic Models
- Neurophysiology
- Cardiovascular Physiology
- Cancer
- Neurobehavior

smhs.gwu.edu/pharmacology-physiology

UCSF Graduate Division

Pharmaceutical Sciences & Pharmacogenomics at UC San Francisco

- pharmcogenomics and functional genomics
- quantitative systems pharmacology
- computational genomics
- molecular pharmacology
- drug development sciences
- therapeutic bioengineering

Get your advanced training in pharmaceutical basic sciences in the Bay Area, birthplace of biotech! Deadline to Apply — Dec 1

pspg.ucsf.edu

UCSF is a founding member of the Coalition for Disability Access in Health Science & Medical Education. The PSPG program is actively recruiting qualified students with disabilities.
Pharmacology and physiology deal with the physical and chemical nature of living organisms and the mechanisms of drug actions on these organisms. These disciplines are interactive and very quantitative, applying math, physics, chemistry, and computer science to the study of biological systems. They cover numerous fields, including neuroscience, cardiovascular and other organ systems, endocrinology, cancer, drug and gene therapy and drug abuse.

- Ph.D. program with small labs, allowing extensive, close, one-on-one faculty-student interactions
- Interdisciplinary with many state-of-the-art methods and supportive collaborations across departments
- Campus- and hospital-based labs
- Minimal course requirements, and personalized advising, allowing curricular flexibility and customization

Examples of research topics in the program

- Mechanisms of synaptic plasticity and circuit function in the brain
- Stem cell differentiation and regulation, and their therapeutic uses
- Bacteria in biofuel development and antibiotic resistance
- Development of drug and gene delivery methods, and artificial organ systems
- Mechanisms of cell death and cancer development, and their treatment
- Nerve degeneration in alcoholism, fetal alcohol syndrome and Alzheimer’s disease
- NMR and X-ray structures of interacting proteins, and their roles in disease
- Nanoscale mechanical properties of cells, and their role in organ function and disease
- Mechanisms of cardiac and respiratory diseases and their treatment

Application deadline: December 1st

Although general GREs are required for entry into the Graduate School, our specific program’s admissions committee does not use GRE scores as an admissions cutoff. Instead, we view each application as a whole, and place emphasis on more powerful predictors of success, such as letters of recommendation, research experience, personal statements, academic performance and interviews. GRE subject tests are not required.

To Apply:
http://www.brown.edu/gradschool/apply

Program Administrator: Ms. Jessica Bello, 401-863-3262, MPP@brown.edu
Program Director: Dr. Anita Zimmerman, Anita_Zimmerman@brown.edu
For more information: brown.edu/go/mppgrad
One-year M.S. in Pharmacology at Georgetown University

Georgetown University’s Department of Pharmacology & Physiology offers a comprehensive graduate program leading to an M.S. in Pharmacology. Both research and coursework-only options are available. The program is designed to be completed in two semesters. Rigorous courses in biochemistry, physiology, and pharmacology are required as part of the M.S. degree. In addition, a number of elective courses are available. Students who are especially interested in Neuropharmacology or in being involved in a Research Project will find both options available as concentrations. Many graduates go on to professional schools (M.D., Ph.D., D.D.S.) or take research positions at universities, biotech companies, or the NIH. Applications are due before May 15.

For information see our website at: https://pharmacology.georgetown.edu/ms_pharm.html

Or contact the Program Director: Dr. Barry B. Wolfe bwolfe01@georgetown.edu

The University of Kansas
Distance Master’s Program

Collaborate with your colleagues and our faculty.
Conduct research at your own institution.

• Professional development
• Career advancement
• Academic improvement
• Increased competitiveness for admission to other programs
• Self-paced to fit your life

Earn an MS in Pharmacology & Toxicology
from anywhere in the world

For more information visit pharmtox.ku.edu
Begin your journey to becoming a biomedical scientist.

Ph.D., M.S. & M.D./Ph.D.

Application Deadline: January 31, 2019

A graduate student will gain expertise in several areas including:

- Molecular mechanisms in addiction: methamphetamine, cocaine, and alcohol
- Leading edge technology in transgenic and gene vector approaches: CRISPR and optogenetics
- Research in neurodegenerative diseases: Alzheimer’s, Parkinson’s, Huntington’s, and ALS
- Toxicology, kidney function, and therapeutic interventions
- Molecular mechanisms in cancer
- Relevant training for academic, governmental and industry positions, and careers in research and teaching

For more information, visit http://lsuhscshreveport.edu/ or contact us at tmoren@lsuhsc.edu
Established in 1891, UTMB was the first medical school in Texas and has grown from 23 students and 13 faculty members to more than 3,200 students and about 900 faculty in the Schools of Medicine, Nursing, Health Professions, and the Graduate School of Biomedical Sciences.

A high faculty to student ratio provides an excellent training environment. The Department of Pharmacology & Toxicology has 34 graduate program faculty and 16 students, with an additional 31 postdoctoral fellows and research associates/analysts/technicians.

Our program is supported by leading NIH-funded faculty, numerous training grant opportunities, an academic healthcare institution, and The University of Texas System.

We support our students with a $29,000 yearly stipend, coverage of trainee tuition and fees, comprehensive student healthcare benefits, and extensive career development.

Degrees offered: PhD, MD/PhD in collaboration with UTMB School of Medicine.

You choose your area of study

- Molecular pharmacology of cancer
- Neuro- and behavioral pharmacology of drugs of abuse and mental health disorders
- Environmental and molecular toxicology
- Structural biology of receptor and enzyme proteins
- Vaccine development
- Drug design and organic synthesis

Applications open August 15, recommended to submit by December 1.

For more information about PHTO, visit www.utmb.edu/phtox/PHTOX-Graduate-Program

To apply, visit gsbs.utmb.edu/prospective-students
Molecular & Systems Pharmacology

Priority Application Deadline is January 15

- Neuropharmacology
- Behavioral Pharmacology
- Molecular Pharmacology
- Cardiovascular Pharmacology
- Endocrine Pharmacology
- Substance Use Disorders
- Pharmacogenomics and Bioinformatics

The Molecular and Systems Pharmacology program comprises a track of the Integrated Biomedical Sciences Program. The Department of Pharmacology is housed in new state of the art facilities located in Memphis, TN. Please visit our website for more information. www.uthsc.edu/pharmacology

Contact Dr. Jeff Steketee (jsteketee@uthsc.edu) for more information.

Washington State University

Ph.D. Program in Pharmaceutical Sciences

We have world-class faculty with a wide range of expertise:
- Translational pharmacology
- Pharmacogenomics
- Molecular therapeutics
- Drug discovery
- Drug delivery/nanotechnology
- Dietary supplements
- Cancer biology

Contact us at 509-368-6607 or pharmacy.gradprog@wsu.edu

Visit us at pharmacy.wsu.edu
Graduate Programs in Molecular Cellular and Biochemical Pharmacology

MS Thesis and Non-Thesis Programs (http://med.uc.edu/ms-in-pharmacology)
- Gain hands-on training with expert UC and Cincinnati Children’s faculty.
- Connect with guest speakers from our drug industry partners: Eli Lilly, Battelle, J&J, et al.
- Prepare for future academic programs (MD, PhD) with degree completion in 10 months.

PhD Program (http://med.uc.edu/pharmacology-phd)
- Faculty’s expertise applies cutting edge approaches to numerous pharmacology subdisciplines.
- PhD students receive tuition scholarships; competitive stipends available.

Application deadline for graduate programs
- **MS Program** submission deadlines:
 - Domestic applications: June 1
 - International applications: March 1

- **PhD Program** submission deadline: February 1

For more information, contact Nancy Thyberg: thybern@ucmail.uc.edu or text "UCPharm" to 555888

Come live and learn in a fun, affordable city!
University of Pittsburgh
Molecular Pharmacology
Training Program (MPTP)

The MPTP offers exceptional education and cutting edge training in all areas of Pharmacology

Visit us at:
http://www.pharmacology.us/MPTP

Contact information:
Graduate Program Coordinator
412-648-9321
gradprog@pitt.edu

Under-Represented Minority students are strongly encouraged to apply
Choose a path to make your impact in the world!

Our Impact

Top tier ranking in NIH funding

Ph.D. Program ranked 2nd in the World

Dynamic, cutting edge research and training programs

State of the art technology and facilities

Award winning discoveries in cancer, autism, PTSD, and drug addiction research

Chapel Hill ranked in Top Ten Best Places to Live in the US

Become a Carolina Tarheel!

Leading Edge Research

Great Community Life

Make your impact in these areas

Cancer Biology
Cardiovascular Pharmacology
Chemical Biology
Computational Bioinformatics
DNA Repair/Cell Cycle
Drug Discovery
Epigenetics
Gene Therapy
Nanotechnology
Neuroscience
Proteomics
Signal Transduction
Structural Biology
Stem Cells
Systems Biology
Translational Medicine

Take your next step by contacting us
phcograd@med.unc.edu
Department of Pharmacology
University of North Carolina at Chapel Hill
http://med.unc.edu/pharm/

UNC Ph.D. Program in Pharmacology
The Graduate Ph.D. Program offers an emphasis in:

Molecular & Cellular Toxicology and Alcoholism & Addiction

Featuring:

- State-of-the-art research facilities
- Research centers of excellence to support graduate research projects
- Teaching assistantships, graduate research assistantships, and scholarships are available

http://www.utexas.edu/pharmacy/divisions/pharmtox
Areas of Excellence:

- Addiction
- Aging
- Behavioral Pharmacology
- Cardiovascular function in health and disease
- Neurological diseases of aging
- Neuropharmacology
- Neurophysiology
- Metabolism and regulation of energy homeostasis
- Pain Physiology and Pharmacology
- Pharmacology of Anticancer Drugs

Financial Support:
- Stipend $30,000
- Tuition, fees, and basic student health benefits are included

For more information:

UT Health San Antonio
Graduate School of Biomedical Sciences
Physiology & Pharmacology Discipline
210-567-4381
The objective of the Graduate Program in Molecular and Cellular Pharmacology is to equip students with state-of-the-art skills applied to a variety of basic, translational and discovery-based research projects. Students emerge as independent scientists ready for a variety of career paths in academia, industry, and government.

Molecular and Cellular Pharmacology Faculty and students work in a diverse array of schools and departments across the University of Wisconsin — the largest graduate training institution in the country.

AREAS OF RESEARCH EXPERTISE INCLUDE:
- Molecular Structure and Function
- Cellular Signal Transduction
- Biochemistry and Chemistry
- Biomedical Engineering
- Cancer
- Neuroscience
- Cardiovascular Biology
- Virology
- Drug Discovery
- Epigenetics
- Metabolism
- Proteomics
- Genomics
- Stem Cell Fate

Contact: Dr. Jon Audhya, Program Director: audhya@wisc.edu or Kristin Cooper, Program Coordinator: kgcooper@wisc.edu

molpharm.wisc.edu